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Efficient Computation of Reflector Antenna
Aperture Distributions and Far Field Patterns

1. INTRODUCTION

The classic subject of reflector antennas has received considerable interest
in the last few years. The reason is that an antenna syatem composed of a
reflector and a feed-array combines two very attractive features, namely the
inexpensive high gain of a reflector and the flexibility of an array for beam
shaping or scanning. A recent effort at the RADC/Electromagnetic Sciences
Division has been directed at developing computational capabilities for such
antenna systems and studying a limited scan technique using a paraboloidal
reflector with a small planar array feed.

A basic component of such an antenna study is a computational method to ob-
tain the far field pattern corresponding to the particular antenna configuration of
interest. Since there are many design parameters including the feed-array loca-
tion and orientation, the array lattice, and the element number and excitation,
this method must be computationally efficient in order to avoid prohibitive com-
puter costs. But, the relative merits of a particular design can usually be judged
from a limited pattern sector, covering the main beam and close-in sidelobes of
the copolarized antenna pattern. This suggests an approach based on aperture
integration, which is highly accurate for the main beam region; and on the use of
scalar theory, which is a significant computational siraplification.

i (Received for publication 20 March 1984)
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The subject of this report is the presentation of this computation method. We
believe the method to have two novel features, not previously reported in the vast
literature on reflector antennas. These are the use of analytic expressions
based on geometrical optics to map the radiation from the off-axis feed onto the
reflector aperture, and the use of a rectangular grid of aperture sampling
points, which simplifies the pattern computation. An attractive feature of this
approach is that in the process we determine the aperture distribution, which
often is of diagnostic value. Two different methods of aperture integration are
pursued, one based on summation of subapertures with constant amplitude/linear
phase excitation and the other based on the Fast Fourier Transform (FFT) and
I sampling theory. 1

IR AT 40 4 s e

2. THEORY

2.1 Aperture Distribution
Consider a rotationally symmetric parabolic reflector fed by a small, planar

array with arbitrary location and orientation, as shown in Figure 1. The reflect-

. or vertex is located at the origin of the x,y, z -coordinate system and the reflector
- axis coincides with the z-axis. The direction to the observation point is (9, ¢),

where 6 and ¢ are standard spherical coordinates. The reflector surface is
given by the equation,

IR o )

4Fz =~ x> +y?, z=<D?/16F |, (n

where F is the focal length and D is the diameter of the reflector.
The feed array has its own local x'y'z'-coordinate system, whose origin is
located at (xi, Vg zf) and whose z'-axis forms the angle 9 2 with the positive

[N DACSE AVRPATELRY LA

K z-axis.

:E We treat the antenna in the transmit mode and apply to the feed the input
;. power Pi' which is divided into radiated power Prad and reflected power Pref'
- From the feed we trace a ray tube of solid angle cross-section dQ through its
:-: reflection point on to the aperture, where it intercepts an area dA. Thus, the
\ complex aperture distribution is given by

1. Bucci, O.M., Franceschetti, G., and D'Elia, G. (1980) Fast analysis of
large antennas - A new computational philosophy, IEEE Trans. Antennas
Propag. 28:306.
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where the complex feed pattern f(9) is normalized such that [ £() |2 represents
the directivity in the direction 2, k denotes the wavenumber, and s; and 5, are
the distances along the ray from the feed to the reflector and from the reflector
to the aperture, respectively. Note that p is a "field quantity'' and the intensity
Ip |2 has the dimension of power per unit area.

The antenna pattern is easily obtained in terms of the aperture distribution.
The aperture directivity in the observation direction (9, ¢) is

- v

]

. 4

\()q.w,lf)

‘i Figure 1. Parabolic Reflector With Feed Array

p 1/2 i

: P -jk(s.+8_)

- _ rad dQ f "a

:_ p = [—"—"4” dA ] f(Q) -] ’ (2)
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where U = (u,v,w) = (sin ¢ cos ¢, ain 6 sin ¢, cos §) is the unit vector in the
direction of observation and ry = (x,, Yq za) is the position vector of the aper-
ture element dA. The gain pattern of the antenna gystem, which includes spill-
over losses but neglecta reflected feed power, is

lp]% aa
G, * Gyp [plan @)

rad

Similarly, the total gain, including spillover and reflected feed power is

o Llol?an
(o, Leltas | o

Equations (2) and (3) form the basis for the computer evaluation of the aperture
distribution p and the antenna pattern Ga

Returning to Eq. (2) we note that the feed characteristics are described
entirely by the feed far-field pattern f(2)., This requires that all points on the
reflector indeed be in the far field of the feed array. However, it turns out that
this condition is not overly restrictive. For example, a 100X reflector diameter
and 50X focal length allows up to 5 feed diameters.

In order to obtain a correct value for the absolute gain Go it is essential
that the feed pattern f(Q2) be very accurately known. The main difficulty lies in
determining the total radiated power Pad’ which involves integrating the feed
pattern over 4% steradians. In Appendix A we derive the feed pattern correspond-
ing to two different feed-array elements: idealized cos &-elements, and realistic
circular waveguide elements.

The remaining quantities in Eq. (2), the mapping function d2/dA and ray

0
S ‘.
A

path lengths 8¢ and 8., are purely geometric quantities, which depend solely on
the coordinates (x;, y;. z;) of the feed center P, and the coordinates (xa, YqrZg) of
the aperture point P, (see Figure 2). Unfortunately, they are nonlinear functions
of these coordinates and in order to derive explicit expressions for them we must
first determine the coordinates (xr, Yy zr) of the ray reflection point P on the
paraboloid. We use the fact that the ray path Pf-Pr-P a obeys Fermat's principle
and determine P, by numerical minimization. Thus, we let the computer search
for the minimum of the total path length

.

(IR R3]

s=g ts = minimum , (6)
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Figure 2. Ray Path From Feed
to Reflector to Aperture

where

1/2
(g -x )2 + (3 -y )2 + (2 -2 )2

1/2

loxy - xa)2 - ya)2 + (2, - za)zl

N
n

(xi + yi)/‘lF

D%/16F . o0

N
]

This proved to be a simple and efficient approach since fast minimization sub~
routines for the computer are readily available. The actual derivation of the
analytic expression for the mapping d?/dA is discussed in Appendix B. This
concludes the derivation of the complex aperture distribution.

2.2 Far Field Psttern

We determine the far field pattern G, by numerical integration of Eq. (3).
For this purpose we approximate the circular aperture distribution by a sum of
square subapertures with constant amplitude and linear phase distribution. This
clearly results in a rather jagged reflector rim, but since we are interested in

9
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an area integral this is of no consequence, as long as we make the division into
squares fine enough so as to adequately approximate the aperture area. In most
cases this represents a rather mild bound on the square size 7. A more re-
strictive bound originates from the aperture distribution approximation. This
requires T to be small enough so that across each subaperture the distribution
can be approximated as

gy g %gp) * Yyn (¥a~Yan!)

p(xa.ya)'-"-p(xan. Yan) © . (8)

where (xan' yan) denotes the center of the n:th subaperture, and the x- and y-
components of the phase gradient at this point are y n and ¢y __. These compo-
nents are taken as the average phase slope between the centers of the two sub-
apertures on either side of subaperture n, which leads to

.
"

«n - largelx, +7 y ) -argelx, -7y, 01/27

wyn larg p(xan, Yan* T - arg p(x, Yan ™~ »)/2+ . (9)

At the reflector edge, where these expressions do not apply, we average only L
over the distance 7 between the centers of the subaperture at the edge and its

TN ¢

,:} interior neighbor. With the approximation (8) the integrals appearing in Eq. (3)
- now reduce to :'
< I 7, psen
aperture pe da
- iy, x -x )+y (y -y )] jklux_+vy )
. ~r ff p{(Xans Yan) € xn-a an yn'a “an’® o 8 "8 4x d
- B subaperture i~ o" a%a
2 'r(ku+wxn) 'r(kv+wyn) ik(uxan+vyan)
:.-T = g !2:: p(xan, yan) sinc ) sinc ) e (10)
: and
2 2 2
aperture lo1® aa = « L letgns va)l : n RN
N
This completes the derivation of the far field pattern. NN
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We want to comment on an alternative approach to the present pattern com-
putation. Since the aperture distribution is known over a rectangular grid of
sampling points it is tempting to use a FFT to evaluate the aperture integral on
the left-hand side of Eq. (10). At the outset of this study we felt that the spatial
variations in the aperture distribution would be so slow that a constant amplitude/
linear phase approximation would allow a much lower sampling rate than an FFT
approach and therefore would be computationally much more efficient. This in
fact is the basic idea in the well-known Ludwig algorithm,2 which uses linear
‘- approximation for both the amplitude and phase functions.

- At a later stage however, we became interested in the approach of
Franceschetti et al, 1l oo employ the FFT to compute pattern values at a very
sparse set of directions, roughly one value per beamwidth, and then use sinc-
. functions to interpolate the pattern at in-between directions. Since the pattern
- is a bandlimited function it follows from sampling theory that this interpolation
'_': is highly accurate. In the implementation of this approach we imbedded the
sampled original circular aperture distribution in a square one, with zeros

. filled in over appropriate sections. The side D' of the square was a parameter
that we chose slightly larger than the reflector diameter D, since in the FFT
this leads to more closely spaced pattern samples and improved accuracy in
the interpolation. As will be shown below with the aid of an example, this method

o o s
RAE LIS

of aperture integration is about 20 times faster than the previous method.
A fina)l comment as to the limitations of the aperture field integration method
may be in place. Two questions can be distinguished: (a) over how large an

""l‘ N "\"c: AR

angular sector around the reflector axis and (b) over how many sidelobes around

g

the (scanned) main beam can the method be expected to provide reasonably nc-
curate patterns?

These questions are discussed in Appendix C. In regard to the first question
- it is concluded that out to angles of about 4/ 2F /A beamwidths from the reflector
. axis, the aperture integration method can be considered equivalent to the more
accurate reflector current integration method. Thus, for a typical reflector with
- D = 100x and F/D = 0.5, this would indicate a sector of + 10 beamwidths around the
axis, However, our method should give meaningful results over a sector several
times larger than this, since we can expect rather graceful accuracy degradation.

To address the second question we compare our method with the Geometrical
Theory of Diffraction (GTD) solution for the field diffracted at the reflector edge.
The result is that the two methods agree over a region of about (1/4)D/x side-
lobes on either side of the main beam. Thus, this number can be considered to

<

PRCAONTS

be a bound on the number of sidelobes obtainable by the aperture integration

B

«

2. Ludwig, A.C. (1968) Computation of radiation patterns involving numerical
double integration, IEEE Trans. Antennas Propag. 16:767.
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method. Although we feel that this bound may be a bit optimistic, it does serve
a8 an order of magnitude indicator.

3. APERTURE BLOCKAGE

The effects of aperture blockage are readily analyzed since this only requires
geiting the aperture distribution equal to zero over the blocked region, before the
far-field is computed. Presently, provisions are available in the computer pro-
gram that allow circular or pie-shaped blocked regions.

Frequently however, an order of magnitude estimate of the blockage effect
is more convenient. To this end we consider the feed shadow as a field super-~
imposed on the unperturbed far field and compare the radiation intensities in
these two fields. These intensities are determined by the power/gain product PG,
and therefore the blockage limited sidelobe level

. 2 2
Lyjock = (f: g)blockage - le Icenter Ablock
ock = . 2 2
aperture |p laverage "Aap
2

lol 4

1 cent d

" lol = (T)_) . (12)

average

where d and D denote the feed and the reflector diameter, respectively, n is the
aperture efficiency and |p center /e avera gel2 is the radiation intensity at the
aperture center relative to the average intensity.

For a typical example we choose an aperture distribution p = (1 - r2), cor-
responding to a pattern with -25 dB sidelobes. In this case n = 0.75 and

2 _
|pcenter / pavemgeI = 3 and therefore,

Lpjock = 4 /D . (13)

This relation, which is depicted in Figure 3, shows that in this particular case
the blockage sidelobes may be ignored so long as d/D < 0. 15.

12
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4. ILLUSTRATIVE EXAMPLES OF COMPUTED PATTERNS

A In this section we demonstrate the accuracy and the efficiency of the computa-
- ‘: tion method with the aid of a few examples. Only single point feeds are considered
-' since the case of an array feed simply constitutes a superposition of such cases.
Patterns shown are computed with the piecewise constant amplitude/linear phase

A
.
Pd

aperture distribution approximation. Computer run times for this approach and

[y

the FFT approach are compared in a final paragraph.

LAV

L4

As a first case we consider a focal-point fed reflector. The feed has a
1/(1+cos 8) field pattern which results in a uniform reflector aperture distribution
and a far field pattern ideally proportional to 2J, (x) /x, where x = (kDsin6)/2. As-
suming a reflector diameter D = 200\ and aperture sample spacing T=4A we com-
pute the pattern shown in Figure 4. As can be seen, the sidelobes closely follow
the theoretical pattern envelope, which is shown by a dashed line. The differences
- from the theoretical values are shown in more detail in Table 1, column "Scalar

- Field". Down to the -30 dB sidelobe level the differences are less than about
- 0.2 dB, they increase to about 1.5 dB at the -40 dB level. Agreement between
theoretical and computed aperture directivity is equally good, the values being
55. 96 and 55.99 dB, respectively. This accuracy was considered satisfactory and

)
| SN o

therefore no patterns were computed with finer aperture sampling, which presum-

- ably would have given still better accuracy at the expense of longer computation
N time.

13
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To evaluate the quality of our scalar approach to a vector field problem we
also computed the vector far-field patterns of this antenna with an independent
computer code SAM*, 3 developed by Franceschetti and D'Elia. The code assumes
a feed consisting of a balanced Huygens source again with a field form factor
1/(1+ cos ¢) and uses reflector current integration. The sidelobes in the E- and
H-planes are indicated by circles in Figure 4 and are also given numerically in
Table 1. Clearly, for the on-axis case the polarization dependence is small,
since the two patterns differ by only 0. 01 dB. From this data we infer that the
SAM code is highly accurate, so that it can serve as a reference even for off-
axis scanned beams.

To evaluate the accuracy degradation with increasing aperture sample spac-
ing 7, we recomputed the patterns using r = 8) and r = 12), respectively. The
resultant patterns are shown graphically in Figures 5 and 6 and numerically in

*One might ask why we developed an alternative to the SAM code. The two rea-
sons are that (a) its structure is complicated and we were unsuccessful in in-
corporating an array feed, despite lengthy phone conversations with G. D'Elia
in Italy and (b) we felt that the scalar approach would nrovide acceptable data
with less computer run time.

3. Franceschetti, G., and D'Elia, G. (1982) SAM Program. Computer program
for offset paraboloidal reflectors, Material from Reflector Antenna Theory,
Computation, and Synthesis course, University of Southern California,
Los Angeles, Calif.. May 1982.

A

o
. PO

A v

)

'. I'l

"... .’ -. 0. -d. .-. .

14

: .'s } C..l‘ ls,l\ '.

R A SR DI
1‘~ . f~(~.'\f~.."fq o, '~f‘f.f \l"- N ~I-.:‘\-\(~."‘.i*.’\- PO SN \‘ W ..‘l'._\ ) oS Y :



v.. -\'

- e

a 5

p.

b, .

g 2v°0  G6°0¥ L6 £P°0  96°0% L6 16°T- 20°6¢ L6 £S5 0¥ 6 ;

- z€0- 08°8¢ L8 1g°0- 18°8¢€ L°g 8L°0 06°6E L8 21°8¢ 8

; 62°0  T8°LE L L 0g'0  €8°LE L ge 1~ gl°9¢ LoL £6°LE L .

. £2°0- 05°Sg L9 €2°0- 05°GE L9 68°0  g9°9€ L9 £L°SE g

SI'0  6L'EE LG 910 08°SE L°g 08°0  ¥F°¥¢ L°g ¥9°g¢ S

21°0- 96°0¢ L% 21°0- 96°0¢ L'y 10 gZ°1e L'y 80°1¢€ ¥

210 90°8% L€ 01°'0 90°82 Lg P00 00°82 L°e 96°L2 £ ]

‘ €0°0- LLEZ L2 £0°0- LL'E2 Lz L0°0 88°€Z LT 18°€2 Z

: 00  99°L1 91 W0 99°LT 9°1 $0°0  £9°L1 9°1 8g°LI 1

! (ge v) (gp-) (AQ) (gp v) (dp-) () (€pe 9) (de-) Q) (gp-) ‘ON

3 g 1dwy uomisod | gig  rdwy uomisod | jnad  dwy uowsoq | 1dwy | aqoyapis

; suerd-H ‘plald 1003 | oueld-a ‘PILJ JOIA platd Iereos Az0aur

'’ sayoeoxddy pratg 10109 A pue Jeredg o uosiIedwo) - sapn)jdwy pue SUCIIBOJ 9GOIIPIS 1 SqEL ..

X

L, s.”

", ....\\

:
-
.\
5
-l\

g "7




-20 +

) | )

§ 1

2
40 + ~
50 +
-£0 +—4t4+—+—+——tp———t——t—t——t—
1098 -76-5-4-3-2-1-01 234546178 9 1

BEAMWIDTHS D(u-ug)

Figure 5. Pattern Computed for a Uniform Aperture With Aperture Sample
Spacing Increased From 7 = 4\ to v = 8\

0
-10¢
= -201 \
i N\
[+ 4
w
2
o
u hat
-60 +—-+——+—4—+—+———r—t—— it :
1098 -76-5-4-3-2-1-01223425867182910 -’-:<
BEAMWIDTHS D(u-ug) e .
\‘-t\'.:\':{
Figure 6. Pattern Computed for a Uniform Aperture With Aperture Sample ‘.-:.:3:
Spacing Increased to r = 12 :.: -
SN

16




PN ey

|
e PN &

T

b % 20N e Aps

B s LA AN

.

Pt
AR
RSN

- s ANA A K
o hete Su by O

>

P
2

:'.":'- »s

[RES

-
-
-
0
-
)
-

b, Nod

AT WY

g . -" L y ot v N L .
.',_f.‘.'... 'i’! ..‘,_ o, "_\.' o _.:‘-.-‘,.-:.. ,_-'._;

RN A S A S AR IR AN O A P St i AR R .

Table 2. Apparently, the accuracy degrades rapidly even though the present
uniform aperture distribution constitutes a particularly simple case, which is
perfectly resolved by the constant amplitude/linear phase approximation.

In a second example we scan the beam approximately 10 beamwidths by
moving the feed off-axis to a position x, = -5.861X, y; = 0, z, = 99. 828, while
keeping it pointing at the reflector center. The feed pattern and reflector re-
main unchanged. Using again an aperture sample spacing 7 = 4\ we obtain the
u- and v-plane patterns (through the main beam position u, = -0, 05, v, = 0)
shown in Figures 7a and 7b. As a reference we also show the sidelobe levels
obtained with the SAM code. No distinction between the feed polarization being
parallel or orthogonal to the scan plane is made, since this results in differ-
ences < 0, 03 dB in sidelobe level. A numerical comparison of sidelobes ob-
tained for the scalar and vector field patterns is provided in Tables 3a and 3b.

In the u-plane, Table 3a, where no depolarization occurs, we note again good
agreement between the two approaches, the difference being < 1 dB for sidelobe
levels down to about =30 dB. In the v-plane, Table 3b, we note that depolariza-
tion becomes significant. If we compare the pattern of only the dominant
¢-polarized field component, we find that the sidelobes are consistently lower
than those of the scalar pattern. This is due to the power lost to the ¢-polarized
field component. When we add the powers of these two polarizations, as is done
in the column labeled Vector Field, |E |% + [E;|” tn Table 3b, we find much
improved agreement with the scalar pattern. The differences are < 0.5 dB down
to the -30 dB sidelobe level.

Finally, we illustrate the efficiency of the FFT far-field pattern computation
with one representative example. We consider the same reflector, D=200x,
F/D=0.5, as before with the beam scanned 10 beamwidths off-axis. The aper-
ture sample spacing T = 4\ and for the FFT we use 64 X 64 samples, which makes
the zero-filled aperture diameter D' = 250A. This choice for D' results in com-
parable accuracy for the aperture integration methods based on the constant
amplitude/linear phase approximation (denoted ""subapertures') and on the FFT,
respectively. The computer run times for the two methods are compared in
Table 4, which lists seconds of CP-time on a CDC Cyber 750 computer. Time
for the 64 X 64 FFT alone is about 0.6 sec CP-time, which shows that 50 percent
of the time is used for the pattern interpolation.
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Table 3a. Sidelobe Positions and Amplitudes in u-plane Cut Through Main .
o Beam - Comparison of Scalar and Vector Field Approaches. Main beam R
scanned to u, = 0. 05, vy © 0 R

Scalar Field Vector Field

Sidelobe Position Ampl Position Ampl Diff
No. [D(u-uy)]  (-dB) | [D(u-uy)]  (-dB) | (& dB)

’l'.' i N N ‘. O N

D

-8 -9.3 31.3 -9.3 31.0 -0.3

-8.2 28.0 -8.3 29.0 1.0

-7.2 26.1 ~7.2 26.2 0.1

-5 -6.2 23.2 -6.2 23.1 -0.1

-4 -5.1 19.3 -5.1 19.4 0.1

-3 -4.0 15.2 -4,0 15.5 0.3

-2 -2.8 10. 9 -2.8 11.1 0.2

-1 -1.5 6.8 -1.6 7.1 0.3
main beam 0 0 1] 0 0

1 0 29.1 4.0 29.0 -0.1

1 37.4 5.1 36.0 -1.4

.1 37.5 6.1 35.9 -1.6

1 35.8 7.1 38.2 2.4

1 40.1 8.1 38.6 -1.5

1 38.3 9.1 40.7 2.4

'
"' " *

L

D N AW N
O 0 N O W e

20

-t B S I A "."'. . _"._‘-._". 7 Ve ."'._" _"\ " At el e e, o '. AR ._'.." N .‘. ST
o, -"!' . .'.'._.‘ '-‘.‘-'."'. v .-'. LAY I."'. T, BAGI A S L ‘. .. AR RGN




N_sm_ + N_aﬁ_ ‘PI31A 20103

£uo N_a..m_ ‘PI3TA XOPOSA

p1atd Jefe0§

1°2 ¥°6¢ L6 g°¢ 8°0¥ L8 £°Le L6 6
¥°0 8°s¢ L8 62 £°8¢ L8 A3 L8 8
1°0 6°¥ve LoL 1°2 8°9¢ LL 8°vE LL L
T°0- L'28 L°9 S°1 £°¥¢ L9 8-zt L9 9
20 2'1e L°g vl | 243 LS 0°1¢ LS S
I°0- L°82 L% L0 5°62 L'y 8°82 L'y v
£°0 $°92 L€ 2°0 0°LZ L°g 2'92 L€ £
S°0 g°tg L°2 8°0 8°12 Lz 0°12 L2 2
¥°0 ¥°01 c°1 c°0 9°01 s°1 0°01 c'1 1
ae 9)  (dp-) (aq) @ 9) (@p-)  (sqQ) (gp-) (aq) "oN
ma day  uopisod mg 1dwy uomisod 1dwy  uonisod aqotapls

0 = %A ‘g0 °0 = °n 0 pauueos weaq uteyy ‘sayoeoxddy pralJg I0}O3IA puE JETESS JO
uosiaedwmo) - weag uyep ydnoayy inD auerd-a ur sepryiidwy pue SUOINSOd 2qOIaPIS 'qGE IRl

21

RN

e e, e,
UL RN ¥ g
AR

»a"
~LS
a

e A o e e T e L
R AN AT SN I RN N A,

ot L s
LS INOMW AT N

. e, ey -
o o~ L4
") \i\‘\_l' e

NP SNPPI

- ate e "e
AR N

'.




5 I NS et AR S S B S WA Vel AE AU Sl Wel WL A S A NS B R Wil g S by, SR e DY PRI RN S SR A A B, Sy S

Pe 5{
g
’ DN,
. o

Table 4. Computer Time for One Pattern Cut Over 20 Beamwidths

.. .
'v\)'l...l'l

Number of | Time for Total Run Time Patten}rglnt:gr ation | ppp Time

e Pattern Aperture Reduction
- Points Distribution | Subaperture FFT| Subaperture FFT | Factor
200 11.5 35.0 12.8 23.5 1.3 18

5. CONCLUSIONS

L
*
)

We have developed a simple and efficient computational method for the eval-
uation of reflector antenna patterns. The method is useful in situations where a
large number of candidate antenna configurations has to be analyzed, as is the
case when syntheaizing an antenna to a given design goal or when scoping a re-~
flector limited scan technique.

The three essential features of the approach are (a) the use of ray optics to
map the off-axis feed onto the reflector aperture, (b) the use of Fermat's princi-
ple to determine the ray path from the feed to a given point on the aperture, and

¢
»
.

-'l’.! . 'A"l'l.l.l.-‘l
'.‘.'-'I .".':';"‘2':"

(c) the use of a rectangular aperture sampling grid and FFT to speed up the
‘:": pattern integration. The pattern and the absolute gain are determined for arbi- b
' trary feed locations and orientations, the only restriction being that the reflector '
4 lies entirely in the Fraunhofer region of the feed. Expressions have been derived el
:::!’ for the far field feed array pattern corresponding to two different feed array ele- ‘:::.":},'-.
f.:;: ments: idealized cos 6-elements and mutually coupled, circular waveguide ele~ ::.'::.:
:::::' ments. ;::{:::
. Patterns computed by the aperture field integration method compare well '

with known analytic results and with patterns computed independently with the

SAM code, which is based on reflector current integration. The validity of the
RS aperture integration method is further discussed in an appendix, where it is com-
3:{: pared with integration over the actual reflector surface and with the GTD solu-
r-" tion. A present limitation lies in the scalar field formulation, which neglects
- the cross polarization. However, the latter can be easily incorporated using
::2-: simple geometrical polarization factors, such as derived in Reference 4.
A
':.'.\
L.
. 4. Kauffman, J.F., Croswell, W.F., and Jowers, L.J. (1976) Analysis of the
L radiation patterns of reflector antennas, IEEE Trans. Antennas Propag.
e 24:53.
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Appendix A

Feed Array Pattern

In this section we derive the scalar far-field pattern f of the feed array. The
main difficulty is the proper normalization such that |£(g, ¢) I2 represents the
directivity in the direction (g, ¢).* Two types of array elements, idealized cos 6-
elements and realistic circular waveguide elements, will be considered.

We assume that the far field of the single, isolated feed element with excita-~
tion V can be expressed as

E (r.0,9) = Vie o 6+ €0s $ eV . e-]kr/r R (A1)
wheree . =e (0,94), e , = e_,(6,¢) are real functions, § and 3 are unit vectors,
o9 o8 o o ~jkr

¢ represents a constant phase angle, and e /r represents the spherical wave-

front. Consequently, for an N-element array with excitation coefficients {Vn}lf
the far field is

E- 3 J (e-ikr jkr - T
E=(e 0+ eo¢$) e /ML e . (A2)
*Note that in this appendix r, 9, ¢ stand for the spherical coordinates in the local

feed coordinate system, which in the main text carries a prime sign.
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" where r = (singcos¢, singsiné, cosg) is the unit vector in the observation direc-
tion (9,4) and T, n 18 the position vector of the n:th element, see Figure Al.
From Eq. (A2) we derive a scalar field E, which correctly describes the field
magnitude and phase but suppresses the polarization, as required for our ray

analysis, by setting

a0 a0 %0

~jkr jkr- T
E-=-e, (ej °fry) LV e n, (A3a)

.

T4,

(i vk

where

eo(e. ¢) = Vezo + e§¢ v . (A3b)

‘._ "‘ ,’1‘«__'

.
’

a¥e’e

OBSERVATION POINT
(r.6,¢)

oy

AU -‘-‘I.l

g
F R ]

-
L]
[y

Figure Al. Feed Coordinate System
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e
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The desired scalar far-field pattern (9, ¢) is now defined by the conditions:

APCAH

-+

|£(6, $) |2 = directivity in direction (g, ¢),

PR W WL

jkr rL a4
argf = arg eOEVne .
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" which leads to
42: e £ Vu e‘jkr' Tn
[ rn
[f le eV, ¢ | dn]
or alternatively
5 ary, | V2 JKF. T, (A
. (9,9 = e LV e . 5b)
) Prad e n
) where Yo is the free space admittance and
: 2.2
- Pa= [ Y, IE|®r" a0 (A6)
i 4x
- denotes the total power radiated by the feed array.
i Al. IDEALIZED ARRAY ELEMENT
- In this case the array element pattern is
Alcos ¢ o< x/2
e (0,9) = (A7)
o 0 0> x/2
and the only difficulty lies in the evaluation of the in*2gral,
. N A= 2
jkr - ry
: 1= [ legy Ve | de (A8)
. 4r n=1
" in the denominator of Eq. (A5a).
-;: Substitution of Eq. (A7) in Eq. (A8) and expansion of the square leads to a
;-: double sum
: N N
3 1=y Y Ton - (Aga)
# m=1 n=1
<
(<
',' where each term is given by
: 27 .
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T N RN
2% %0 tet Nl

o .
l'l

x/2 2«

. ) L

;- Tmn'vmvn f f cos Qe s8in ¢ dg d¢

> o o

'

o
‘:' N 7/2 2x jkl(x_-x )cos ¢ + (y_ -y )siné])sin o

2 =V, V. f [ e m n m °n sin g cos 9 do d¢
- ° ° (A9b)
‘: and the asterisk denotes comples conjugate.
":: Equation (A9b) can be integrated analytically and the result is

- * 2,

L Vi Vn ks_ Iy (k8 n) m ¢ n

:: Tmn = » (AIO)
(v |2 " m=n

- m
o where

G 1/2

0 _ _ [ - t 9 [} . 1 2

.Z: ®mn = ®nm [(xm xn) + (ym yn) ! (A1)

.

. is the distance between element m and element n, and J 1 denotes the Bessel
.. function of the first kind and order 1. Thus, for cos §-elements the field pattern
- for the feed array is

EL T Ve . (A12)

. ' LU .
£(6,¢) = [_41: cos g J Y2 kb cosd +y, sind) sing
mn mn

where the terms Tmn are given by Eq. (A10).

> A2. CIRCULAR WAVEGUIDE ELEMENTS

.
. e

In this case the feed consists of an array of open-ended circular, dielectric
loaded waveguides in a ground plane. Each waveguide is matched to its (single
element) radiation admittance and is assumed to be driven in the dominant mode
by a matched generator.

[
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:.:",: The desired pattern function 1(6, ¢) is now derived in the following way. The

aperture field of each waveguide is approximated by the two orthogonal dominant
g modes, one driven and one parasitic. Ideally, the aperture excitation of each
\3: guide and, consequently, the radiated field is directly proportional to its driving
:"‘_ generator voltage. In a realistic array however, the aperture excitation will be
N

..

perturbed by the mutual coupling between the elements. We evaluate this effect
with the aid of a separate computer code based on Reference Al with cylinder rad-
ius -» o, which for a given set of N elements driven with voltages {An }1;‘ computes
perturbed driven aperture voltages {V;l }lf and reflected mode amplitudes {R;‘ }l;‘
and corresponding quantities {V;}llv and {R;}llq for the parasitic mode, see

Figure A2.
..:~ —
Mo—— 1 watcune T,
= Ry - | SECTION "
1
Figure A2, Waveguide Element With
Aperture Matching Section
‘_ The explicit form for the y-polarized TE11l-mode function o(r, ¢ = ¢rf' + ¢¢$ is
i b=y [ B Y21y () eme
r J,x) 2 r 1( a )
1 x“-1
= 1/2
X =1 |2/x X g (%
% T, &) [ 2 ] a Jl( a ) cos ¢
. x“=-1
e x>1.841 (A13)
;.;5 where a is the guide radius,
N The far field E = Eo o 6+ E, ¢$ radiated from an electric aperture field
Y, \AR 1s21
- R ST
) Al. Steyskal, H. (1977) Analysis of circular waveguide arrays on cylinders, RN,
- IEEE Trans. Antennas Propag. 25:610. Ry
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x -1

i 1/2
E =iV ¥ /r) [—2{-"—] Aind 5, (a sing)

" 1/2 '
Ey=iV'(e JKT /) 22/" ks ©080 089 _ ;' (ka sing) .
x“- 1 - (kaslng)2
x
By comparison of Eq. (Al4) with Eq. (A3b), we deduce the scalar element
pattern to be

2

1/2 J1(ka 8in8)
e‘()y) = j l:lzL"_} ka ( s )

sing ka s8inf
x -
1/2
1
J1(ka sing)

+ cosf cos¢ )
1o (fmee)

where the superscript (y) indicates that this pattern corresponds to the y-polar-
ized TE11-mode. The pattern for the x-polarized TE1ll-mode is

o cosd ka siné

x2-1

: 2
1/2 J1(ka 8inf)
e - [_Lz "] ka ( )

[}
J1(ka 8ind)
+ | cosf sin¢ ——M———
I - ( kasin9)2
x
which is obtained from Eq. (A15) by a simple interchange of sin¢ and cos¢.

For the proper normalization of the feed pattern f we also must determine
the total power radiated by the array. This could again be done by integrating
the pattern over 4x sr, but fortunately this time there is a simpler method. The
power incident at the waveguide apertures is

2
T IAnI

Pi*Yren &




and the power reflected is

[ 2 11} 2
Pr 'YTEllg (IRnI + IRnl > .

where YTEll denotes the TE11-mode admittance. The difference must be the

radiated power and therefore,
P =Y. z(a (2o R %= R0
rad TE1ll n n n n ’
The scalar field pattern now becomes

jk(x;l cos¢ + y:.l sin¢)cosd

} 1/2
f=l4r Y /P 41 /“e LA e

where Prad is given by Eq. (A19) and the element pattern

{ ec()") for x-polarized excitation
e =
° egy) for y-polarized excitation

is given by Eqs. (A15) and (A16).
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Appendix B

Feed-Aperture Mapping

In this section we determine the relation between the solid angle cross-
section dQ of a ray tube, which emanates from the feed, and the area dA, which

this ray tube intercepts at’the aperture, see Figure Bl.

This is a purely

geometrical problem and we repeat the defining equations here before we

develop the solution.

(1) Paraboloid equation
(2) Focal length

(3) Reflector diameter
(4) Given ray origin point

Known reflection point

Given aperture intercept point  (x

(5) Feed-reflector

8¢
distance

(6) Reflector-aperture s,

distance

X2+ y2 = 4Fz2 (B1)
F
D
(xf: yfo zf)
(xr'yr'zr) determined from Eq. (B2)
below.
A za)
i . 2] 1/2
2 2 r vr _
(e =x0)" + (y,-yg) *( YR )
(x_ -x )2+( - )2+(.ﬁ:_y}_'.-z )
r “a Ir ya 4F a
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REFLECTION AREA dA AT (xg,Ya:Zq)
& POINT (xp¥rZy)
N
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RAY TUBE CROSS SECTION d(

REFLECTOR

4
FEED CENTER (x,y1,21)
-: n
E Figure Bl. Ray Trajectory From Feed to Aperture
L»_'{ (7) Total ray path length § = s; + 8, = minimum , (B2)

with respect to X, ¥,.» (Fermat's principle).
We also introduce a local, feed-centered coordinate system &,n,{, which is
translated relative to the system x,y, z,

§=x-xf
LU i £

t=z-2 (B3)

£ ’
since in this system the ray tube cross-section df2 is conveniently expressed as

dQ = |sin6 a0 dé| , (B4)
where 6 and ¢ are the local spherical coordinates. *

The desired relation between the solid angle d2 and the aperture element
dA is now obtained as follows. We consider the coordinates 6, ¢ that determine

#*Note that in this appendix the spherical angles 8, ¢ are different from those in
Appendix A, since the §,n,{-system here is rotated relative to the x,y, z-system.
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the ray direction, tobe functions of the coordinates X, Y, 8t which the ray inter-
cepts the aperture,

l(‘r
R

6= O(Xa. ya)

.
r S

‘ = ‘(xal ya) . (BS)

o
K ,
et v

The mapping of an aperture area element dxa dya onto an element d6 d¢ is
given by

ettt
P

)
y.
18
b

R

d6 d¢ = J dxa dy, (B6)

where the Jacobian

30 99 _ 80 8¢
J = — - . (B7)
ox, 9y, 9y, 9x,
Substituting Eq. (B4) in Eq. (B6) and setting dA = |dxa dyal yields the
desired relation

——gg = {J{sin6 , (B8a)
where
1/2
in6 e enp [( )2+ ( )2] 1/7 (B8b)
8 3| ———— = | (x_-x)° + (y_-y. ) . B8b
2,.2,.,2 r °f r Jf f
Lo et

This completes the derivation of d2/dA. The remainder of this appendix will be
devoted to the development of explicit expressions for the partial derivatives in
the Jacobian.

According to Fermat's principle Eq. (B2) the reflection point (x . A zr) is
a stationary point so that

28, 9

axr

8 __,4 | (B9)
ayr
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For small position increments dxa. dya in the aperture point the resulting
increments dx ., dy, in the reflection point will be such that Eq. (B9) still holds,

AR -
R R RN '-‘

that is,

'.:. d(as - Q?! dx +823 dy +328 dx + a%s dy = 0

- 5xr ) axi T ayraxr roox ox, Ta dy,ex, "Ya

P 2 2 2 2

> s 3”8 "8 9”s s

i d(——)= ax_+22 4y + dx_ + dy. =0 . (B10)

9y, 5§r5yr roo, yi r axaayr a ayaayr a

N From Eq. (B10) we solve for dx , dy,. in terms of dx_, dy, to obtain

::::" dx, = adx, + B dy,

—

I.. dy, =vdx, +6dy, . (B11)

. where

' o=l [328 8%s - ﬁ %8 ]

C ayraxr axaayr 3}'3. axaax

o -

= ge=l [_3..2_5__ 2% _ 9’5 d%s

i c ayraxr ayaayr ayi ayaaxr_.

;'.._: —

L yal (025 8% _ 9%s 2%

" C [ 33y, ox, 0%, ~ 5,2 x By,

b_'_- — r e

E - -

soll2% 9% _ % % (B123)

N C 1%, 85 0%,, axi ayaayr__

NG

G
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e

R 2

< 2 .2 2

L c-2823s8 (gxsay ) . (B12b)
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The derivation of explicit expressions for the second-order partial deriva-
tives of s-sf+sa required for a, B, v, 6 is lengthy but straightforward. The

result is
2
%;g- = [1+ (z_-2))/2F + x2/4F%] /8, - [x_-x; +x (z - p/2F12 /8] +
T
+{1+(z -z )/2F+x2/4F]/s “[x -x_+x (z -2 )/2F]2/s3
ra r a r-a ‘rr ‘a a
s 2
: W = xryr(l/sf+1/sa)/4F - [xr-xf+xr(zr-zf)/2F] .
< Iypye + yr(zr-zf)/ZF]/S? - Ixp=xy + xr(zr-za)/ZF] .
3
* yp=Yy + ¥, (2,-2,)/2F /5,
. 2
: :—y-%— = {1+ (zr-zf)/ZF + yf_/4F2]/st - lyp-ye * yl_(zr-zf)/ZF‘lzfsf3 +
i r
! +{1+(z_-2z_)/2F + 2/4F2]/s -ly .-y, ty.(z -z )/211‘]2/53
; T a Yr g = ™Y ¥ Y% "% a
;';
; i‘———- -1/s_ + (x_-x)[x _-x_ +x (z_-z )/2F]/53
' 9%, 0% - 8a p Xg! XXy ¥ Xp(2,72, a
| o’s = (x_-x )y -y + o2+ 2 _4F )/8F21/33
: §x—aWr XX Y™V T Ve e T ¥y Za a
|
2
2”8 2 2 2 3
: -5}’33—", = (ypyy) Ixp-xy + 2, G+ yy - 4F za)/8F l/sa
I
] 328 3
i 9,0y “1/8y + (7 Yg) Iy oY, + Yyple,-2,)/2F ) /5 . (B13)
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:: Returning to Eq. (B11), we note that the coordinate increments dxr. dyr on the
l reflector surface also are accompanied by an increment
dz_ = (x dx + yrdyr)/zF . (B14)
We have now traced the aperture point increments dxa. dya to corresponding
l reflection-point increments dx ., dy,. dz,, and it now only remains for determine
- how these increments are viewed from the feed in terms of d6, d¢. In other
- words, we need to determine the unknown coefficients in the relation

d(9=a1 dxr+a.2 dyr+a3 dzr
d¢ =bl dxr+b2 dyr+b3 dzr . (B15)

Once we have these coefficients we can substitute Eqs. (B11) and (B14) in
Eq. (B15) to obtain

O ol SRR AL

de = < dxa-bc2 dya

Tutae s
REARTLN

.'

dé

cg dxa +cy dya , (B16)

where the four new coefficients €2 Cg» C3o ¢4 NOwW can be identified as the four

IR AR -
v Yo% Ta' Ty ‘a

partial derivatives required for the Jacobian. Thus, we have

..
% e

26 .
| Bx, = C1 T (8 * agx /2F) + (e, + agy, /2F)
" 89 . o = Bla, +a.x_/2F) +6(a, +azy /2F)
. aya 2 1 ¥ 2 Vr

L)
_sg = C3 = a(bl + b3xr/2F) + ‘Y(bz + b3yr/2F)

HAAALLEN bt BN

9¢ =

E E =c, = Blo, + baxr/ZF) +6(, + by /2F) . (B17)
v
’,
Z .
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The coefficients al.az.a3.b1.b2,b3 are determined as follows. From the
standard relation between spherical and rectangular coordinates

N S

cos 8 = P
A/ §2+nz+l:2 f

cos ¢ = = —f— (B18)
£%n

we obtain by differentiation

de

(ETAE + ntdn - £ agl /el ¢

[-ndE + §dn]/t2 . (B19)

dé

In view of Eq. (B3) we have

d€ = dx, dn = dy, df = dz (B21)

and when we substitute Eq. (B21) in Eq. (B19) and identify the resulting expres-
sion with Eq. (B15) we find

E Y
1]

2 2
1° 5 gr/sf b b, = '"r/tr

)
]

2
2-nr§r/sftr b, &/t

Y]
[

2
3= t./5¢ by=0 , (B22)

where the subscript r indicates that the value at the reflection point is to be used.
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. Substitution of Eqs. (B3) and (B22) in Eq. (B17) yields
2 20« follx ~x)(z_-2)) - x_t2/2F] + 1lly_-y)(z_-z)) - y 12/2F]} /st
N 5x, r e T felr r Vg 272 T Yrty f'r
) 28 2 2 2
5y, = {B[(xr-xf)(zr-zf) xrtr/2F] + (5[(yr yf)(zr zf) - yrt:r/ZF‘]}/sftr
o -g—i—= [-aly -yp + vix -x))] /tf,
<7 a
. % = [-Bly -yp + 8&x =xp)] /ti g (B23a)
. a
- where
- t. = x/(x cxp? + (g -yp? (B23b) -
. r T °f YrYs : .
X i
- In summary, we have now, via Eqs. (B8), (B7), (B23), (B12), and (B13), :;’_
- expressed the desired function d?/dA entirely in terms of the known coordinates P
. of the feed point, reflection point, and aperture intercept point.
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Appendix C

Validity of the Aperture Integration Method

We want to briefly comment on the validity of the patterns obtained by the
aperture integration method. In particular, we want to know over how large an
pui angular sector around the reflector axis the method is valid and how many side-
lobes about the (scanned) beam are accurately predicted.

The first question may be answered by comparing our method of integrating

P

over an equivalent rlanar aperture with a more accurate integration over the actual,

“e
v ia e e
q

curved reflector surface. This is done in Reference Cl, where it is shown that
the two methods are equivalent out to angles in the order of A/2F /) times the
beamwidth. For larger angles there will be quantitative differences, although we

.
o e
.
‘

would still expect good qualitative agreement.
One numerical example illustrating this point is provided by the patterns of

Table 3. There, good agreement between the aperture field integration and

o .
e,

v

- current integration methods is shown out to 19 beamwidths from the reflector
axis, which is 1.4 times further than the 14 beamwidths obtained by the 4/ 2F /A~

criterion.

The conservativeness of this criterion is further demonstrated in the next

- .
Tetotete
BAININA SN

. example, where it is exceeded by a factor of 3. We consider a reflector with
D=100x, F/D=0,5, with a balanced Huygens feed located at Xp = =9.98), y; = 0,

- zg = 49.08), and with a 1/(1+cos 6) field pattern pointing at the reflector center.
-:: Cl. Clarke, R.H., and Brown, J. (1980) Diffraction Theory and Antennas,
S John Wiley & Sons, N.Y., p. 196-199,
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The nominal main-beam position is u, = 0.174, v, = 0, corresponding to a scan
angle of about 17.4 beamwidths. The u-plane pattern through the main beam
obtained with the aperture integration method is shown in Figure C1. The side-
lobe magnitudes and positions as computed with the current integration method
(SAM) are indicated by circles in the same figure. The maximum difference is
2.7 dB and clearly the two methods produce very similar patterns out to at least
27 beamwidths from the axis. The4/2F/) ~criterion yields only 1C beamwidths
in this case. The corresponding v-plane patterns through the main beam agree
with the same accuracy as in the u-plane pattern when the powers of the 8- and
¢~polarized components are combined. Computations with two orthogonal feed
polarizations showed that the patterns are very insensitive in this regard, since
the sidelobe peak variations were less than 0. 01 dB down to the -40 dB sidelobe

level.
- o Yo PatN
< 10}
- .20.

s )

i)

~ & 07 A

ot ;

<0

e -501

S

et 60 o e ————

1098 -76-5-4-3-2-1-0123 45678 910

> BEAMWIDTHS D(u-ug) 20X

:-7 FHRSN

. Figure C1. Comparison of Patterns Obtained by Scalar Aperture Field N .:-’"3:.

" Integration (Solid Line) and by Vector Current Integration (Circles) ; oy
f;'—w

::: : .“

Y A

—"‘ N v

42 9

L, ,,-.:-:.;-. -

"o -:.f.'é':J

a it

o, ‘-\;.N;.ﬂ‘:

7 X

v £t
e

2 e

_'.:'_,.-..'v_'.'- et .:_._:_,'- TSN R AR RP AT R NICAT STy, ¢




R ".n IR
I IR )

To address the second question we compare the diffraction patterns computed
by the aperture integration method and Geometrical Theory of Diffraction (GTD),

respectively. The latter method is used as a reference, since it correctly
describes the far-out sidelobes. Such a comparison is quite illustrative and will

be outlined below, since rather surprisingly, we were unable to find it explicitly
in the literature.

We consider the 2-D case of a parabolic cylinder, diameter D and focal
distance F, illuminated by a focal line source. The geometry and notations are
shown in Figure C2. Note that the reflector rim is not necessarily a knife edge,
but a general wedge of angle ¢w. The feed has a symmetric y-polarized field
pattern such that E(s,y) = E(s, -y). If we trace a ray tube of angular cross-
section dy from the feed to the aperture we find that it intercepts an aperture

element

dx=Ld¢=sfdu , (c1)

cos2 v/2

where s¢ is the distance from the focus to the reflection point on the cylinder.
Thus, the ray tube has the same cross-section area at the reflector as at the
aperture. The incident field Ei(¢) at the reflector is assumed normalized such
that |E1|2 is the intensity in Watts per meter. Since the power within the ray
tube is constant it follows that the normalized aperture distribution

OBSERVATION
POINT (R, )

Figure C2. Geometry of Parabolic Refle tws «ith Line
Source Feed
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p(x) = E;(y) e , (C2)

where the phase factor expresses the phase delay over the distance 8, from the
reflector to the aperture.

The far field based on aperture integration is now obtained as follows. Each
aperture element dx represents a source of strength p(x)dx, which radiates a
cylindrical wave, described by the Hankel function H 0(2) (kr). The total far field
can be shown to be

D/2
e Hff’(kr) dx
-D/

[ %)

D/2

- - /"Zj}lfR-e-ij f o ejkxsine ax (C3)

-D/2

where the superscript a denotes aperture integration, and we have made the
usual far-field approximations for the Hankel function and the distance r from
the aperture element dx to the observation point. In the sidelobe region the
integral reduces essentially to two end contributions, c3 so that

.1 .
- -jkR sin(z kD sin6)
a _ Air e’ 2
BN =0 T p0) g : (e
Finally, in view of Eq. (C2) we obtain
1 .
: -jkR sin(z kD sing)
a . Air e’ S Al
B =T Eylv, sin® (€5)

/R

The far field E€ according to the GTD method consist of the sum of the fields
El and EZ' scattered at the left and right edge of the reflector, as shown in
Figure C3. Due to the feed symmetry the incident field is equal at both edges
we have in the far zone

C2. Harrington, R. (1961) Time-Harmonic Electromagnetic Fields, McGraw
Hill, N.Y., p. 288.

C3. Felsen, L., and Marcuvitz, N. (1973) Radiation and Scattering of Waves,
Prentice-Hall, N.J., p. 387.
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Figure C3. Reflector Edge Geometry for GTD Analysis

~jk(R +1 Dsino) -jk(R -3 Dsiné)

. g .. € €
- EExD, E () N + D, E;(y) N : (C6)

are edge diffraction coefficients. Setting momentarily

::: where D1 and D2

w' = % KD sin6 (c7)

we obtain from Eq. (C6)

-jkR
g . -3 _ . ' , e
E® ~ [(D1+D2) cos u' J(D1 D2) sin u'] Ei(u,o) = . (C8)

We use Keller's original diffraction coefficients, see, for instance Refer-
ence C4. When the incidence and scatiering angles appropriate for our geometry
(see Figure C3) are substituted in these coefficients, the result is

- 1 + 1 1 1

- D,+0,=C - -
T 1 T Yo-0 T Lot T -0 T m+6
r- Yo~ I-c T ecos = S = = COS me
COS = - COS—C— COSg - COS COS £~ COS —— COSg = COS —

_ 1 ) 1 ) 1 1
L "Dy =C Uo-0 7 Voth e 70|

T T
- — = COS ——— - S—— COS—~=COS ——
cos n cOoSs coSs n 0S B cos o Cco o A o

Mg
L)
LN

e«

(C9)

T C4. Balanis, C.A. (1982) Antenna Theory, Harper & Row, N.Y., p. 509.
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where

c=eir/4 sin(r/n) / (n4/27k)

n=2 -¢w/1r . (C10)

We now investigate the behavior of D1 + D2 and D1 - D2 in the sidelobe
region near the main beam, where |8]|<<1. In general wo' n and 7 will be
independent parameters and therefore we obtain

2 COS*;‘"
lim (D, +D_) = C + . (C11)
6-+0 1 2 cos ¥ - cos-%?- sinz-l
n n
For D1 - D2 however, the situation is different and there we find
D.-D. ~C 2___ (C12)

1 2~ 0 .«
Slnnslnn

which is unbounded when 8--0. Substituting the above expressions into Eq. (C9)

yields
g /4 oJKR ‘
E° > nsmierm E;lvy) 7R [sinu' + je cosu'] , (C13)
where
T
cos—
€= 1 + 2n" sin%sin% . (C14)

T '] .
cos— - costQ. o
o8 & 2 gin m

The second term within the bracket in Eq, (C13) is in phase quadrature to
the first one and has a much smaller magnitude. Its main effect is to fill in the
pattern nulls. For reflector edge angles w ¢ = 90° and normal F/D ratios we
find that

e,y 0| = |sin%| . (C15)
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The second term may therefore be neglected and as long as

lo] < 6 =% (C16)

max

the relative error in the field pattern envelope will be less than 1/32, or about
3 percent. Thus, we finally obtain

fre -jkR
E€ ~ Tn—s—h{{-‘m-)—e—ﬁ E () sin(2KD sine) . (C17)

Comparing EE above with E® of Eq. (C5), we find that the ratio

2
2 0
E? _ nsin(6/n) 6° L max _ 1
;é'——sin—AL—l+6 (1 nz)51+~—6-—-1+96 R (C18)

where we have substituted Eq. (C16) for emax‘ The relative difference between
E? and E® thus is 1/96, or about 1 percent. This error adds to the 3 percent
relative error in E? incurred earlier.

In summary, we have shown that the sidelobe pattern, in particular the pat-
tern envelope and the sidelobe positions, is accurately determined by the aperture
integration method out to angles of + 15°% or 1 /4 (D/)) beamwidths around the
main beam. In this sector the sidelobes can be viewed to be determined by the
aperture field alone, independent of the reflector edge geometry. Consequently,
even when we scan the main beam by imposing a linear phase taper over the
aperture, we can expect aperture integration to accurately predict the sidelobe
pattern over a +1/4(D/)) beamwidths sector, but this time centered around the
scan direction.

The above conclusions are independent of the feed polarization, as can be
easily shown. Also they apply equally well for a circular reflector as for the
cylindrical reflector considered here, since the diffraction coefficients are
identical in the two cases. However, we feel that the idealized geometry con-
sidered here may be a particularly favorable case and that caution should be
exercised when applying these conclusions to more general problems, as for
exai ;ple, offset reflectors, highly tapered illuminations, or illuminations with
large amplitude and phase errors.
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